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Boundary-layer growth at a three-dimensional 
rear stagnation point 
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The theory of boundary-layer growth at a rear stagnation point, first presented 
by Proudman & Johnson, is here extended to cover fully three-dimensional rear 
stagnation points. Supporting numerical solutions of the full initial-value problem 
establish the relevance of the inviscid similarity solutions obtained. 

1. Introduction 
Recently Robins & Howarth (1972) and Howarth (1973) have presented 

analyses and numerical solutions for the problems of boundary-layer growth at 
two-dimensional and axisymmetric rear stagnation points. Their analyses follow 
the spirit of, and are extensions of, the pioneering paper of Proudman & Johnson 
(1  962). 

It is natural to inquire whether or not any progress can be made with the 
problem of a general three-dimensional rear stagnation point. Such front 
stagnation points have been studied by Howarth (1951) and Davey (1961). 
A co-ordinate system (x, y, z )  is introduced with the stagnation point in question 
at  ( O , o , O ) .  The co-ordinate normal to the body is z, and x and y are in the 
directions of the two principal curvatures. In this co-ordinate system, the velocity 
outside the boundary layer has components 

ax, by, - ( a + b ) z  (1.1) 

for some constants a and b. The signs and relative magnitude of a and b determine 
the nature of the stagnation point. In this paper we speak of a point of attachment 
if the normal component of the velocity outside the boundary layer is directed 
towards the wall, that is, if a + b > 0. In  the opposite case we speak of a point of 
separation. If a and b have the same sign, the stagnation point is termed a nodal 
point; otherwise it is a saddle point. This classification is consistent with the more 
usual one given in terms of the topography of the skin-friction lines at  the body. 

The object of this paper is to apply the Proudman-Johnson theory, as far as 
is possible, to the problem of three-dimensional stagnation points of separation, 
of both nodal-point and saddle-point type. 

The spirit of the argument is the same as in the Proudman & Johnson paper; 
that is, the appropriate idealization of the flow is assumed t o  be that near a plane 
wall, with outer boundary condition ( l . l ) ,  and a similarity solution of the 
inviscid form of the equations is sought. 

19 F L M  67 



290 J. A .  Howarth 

Denoting the velocity u by (u, v, w) and the time by t ,  we write 

u = axF,(T, 7 ) ,  v = byG,(T, 7 ) ,  w = (a14 vgw*(r, 7), 
7 = z l a l t / h ,  

and substitute into the equations of motion and continuity, to obtain 

7 = la] t 

F(0,7)  = G(0,7) = F,(0,7) = GB(0,7)  = 0 for 7 =k 0, 

F(7,O) = G(7,O) = 7 for 7 =!= 0, 

F,,+l, G , + 1  as 7+m. 

(1.2) 

( 1 . 3 ~ )  

(1 .3b)  

( 1 . 3 ~ )  

(1.3d) 

(1 .3e)  

( 1 . 3 f  1 
When the body is idealized as a plane wall, these are exact solutions of the 
Navier-Stokes equations, as in the original two-dimensional case. We shall 
assume without loss of generality that a < 0. In  the nodal-point case we shall 
have b < 0; in the saddle-point case we shall have b > 0, with b < ( a ]  t o  ensure 
a point of separation rather than a point of attachment. If we define c = b/a, then 
we have - 1 < c < 0 for a saddle point of separation, and for a nodal point of 
separation it is sufficient to  restrict attention to the range 0 < c ,< 1. Note that in 
the saddle-point case our convention is the opposite of that used by Davey, who 
had - I < c < 0 for a saddle point of attachment and c < - 1 for a saddle point of 
separation. The reason for this particular choice will become clear later; mean- 
while it is hoped that the foregoing remarks will prevent any possible confusion. 

(1.3 b)’ 

( 1 . 3 ~ ) ’  

With c = b/a, and the above conventions, (1.3 b, c )  become 

F,,, - ( F  t- cG) F,? + F i  - 1 = F,,T, 

G,,, - ( F  + cG) G,, + c(Gi - 1) = GvT. 

We now seek a similarity solution of the inviscid form of (1.3 b, c)’ of the type 

and obtain 
(1.5) 1 - (f+ c g ) f ”  + f ’2 - 1 = ( - A/h) <f ”) 

(f + cg) g” + c(g’2 - 1) = ( - A/h) <g”, 

where a dash or dot denotes a derivative. As in the two-dimensional case, we 
retain the boundary condition f (0) = g(0) = 0, together with the outer boundary 
condition, which becomes 

Separation of the variables gives A/h = k, or 

f‘(5) -+ 1, g’ (0 - t  1 as 5+m. (1.6) 

= ekr 
for some constant of separation k. 
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We make the same assumption as Proudman & Johnson, that the approach to 
unity off’ and g‘ be exponential. Under this condition, straightforward analysis 
of the asymptotic form of (1.5) gives 

k =  l + c ,  (1.8) 

any other value of k giving a t  best algebraic decay. Our similarity equations 
then become 

(1.9) I [ f+cg-( i+c)g]f”+i-f’2= 0, 

[ f+cg-(1+c)g]g”+c(l-g’~)  = 0, 

f ( 0 )  = g(0) = 0, f’(oc)) = g’(C0) = 1. 

We can immediately obtain a first integral of (1.9) because 

[f+cg-( l+c)(]  = ( f ’ 2 - l ) / f U  =c(g’2-l)/g” 

and so 

(1.10) 

(1 .11)  

where K is some constant that  will depend on c. 

2. Saddle-point case 
As <+m, we know that f ’ + l  and g ’ + 1 .  Hence ( l - f ’ ) / ( l + f ’ )  and 

(1  - g’) / (  1 + 9’) both tend to zero, and further, in the saddle-point case with c < 0, 

This means that (1.11) cannot be satisfied unless either f ‘  = 1 and li‘ = 0, or 
g’ = I and l / K  = 0. Both of these are possible solutions of (1.9). This means that, 
for the saddle-point case a t  least, reverse flow does not occur in the inviscid flow 
region in one or other of the velocity components. It seems clear on physical 
grounds that reverse flow will not O C C U ~  in whichever component has its external 
flow parameter (a  or b )  positive. Indeed, this is confirmed in the numerical solu- 
tions described subsequently. We have agreed on the convention a < 0, b > 0, 
and so 

Since g(0) = 0,  we have immediately 
g’ = 1. (2.1) 

9 ( 0  = 5, ( 2 . 2 )  

and our similarity equations (1.9) become 

i (f- ()f” + 1 - f ’2 = 0, 

9 = 5, 
f ( 0 )  = 0, f ’ (a3)  = 1.  

(2.3) 

The solution of (2.3) for f is formally identical to the original two-dimensional 
Proudman & Johnson solution, viz. 

f = < - ( 2 / d ) ( l - e - d f ) ,  g = (  (2.4) 
19-2 
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for some constant d. The reverse-flow region grows like exp { - (1 + c )  T} .  This is in 
agreement with the two-dimensional case when c = 0, as expected. The growth is 
slower as c --f - 1. The case c = - 1 is a limiting case, and exhibits no reverse 
flow. 

The solution (2.4) can be regarded as the first outer solution in an asymptotic 
series. It is not valid in the vicinity of the body, where the viscous forces are 
important. However, we can now examine the flow in the immediate neighbour- 
hood of the body. For small 6, we have 

which gives 

Bearing in mind that a < 0 and b > 0, this indicates that the flow near the wall is 
that for a nodal point of attachment. Indeed, writing 

p = -f&), G = go(7), c* = - c  (3.5) 

for our first inner solution, we obt,ain 

( 2 . 6 ~ )  

( 2 . 6 b )  

( 2 . 6 ~ )  

( 2 . 6 4  

(2.6e) 

which is precisely Howarth’s (1951) problem for a nodal point of attachment. 
It is of course necessary to verify that (2.4) is the relevant asymptotic solution to 
our problem. To do this we appeal to a numerical integration of the full problem, 
and adopt a procedure identical to that of Proudman & Johnson, that is, plot 
log (1 - f ’ )  against 6 ,  and expect a straight line (except very close to the body), 
from the slope of which the constant d can be found. This has been done (although 
to save space the graphs are not reproduced here) for c = - 0.05 and c = - 0-5. The 
expected straight line does indeed materialize, and the value of the constant d that 
emerges is 3.53 when c = - 0-05 (close to  the c = 0 result of 3-51) and 6.15 when 
c = - 0.5. Also, the values for the x and y components of the skin friction obtained 
from the numerical solutions clearly tend towards the values expected assuming 
a nodal point of attachment at the wall. The first-order saddle-point problem may 
thus be considered solved. 

3. Nodal-point case 
In  the saddle-point case of the last section, it was discovered that reverse flow 

occurs in one velocity component only. In  the nodal-point case we must expect 
different behaviour, a t  least for certain values of c. For c = 1 we must recover the 
axisymmetric resuIts of Howarth (1973), with f = g, and hence reverse flow in 
both components. The question is, does this type of behaviour continue right 
down to c = 0, or is the behaviour for small positive c more akin to the saddle- 
point case, with reverse flow in one component only ! This latter possibility would 
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FIGURE 1.  Sketch (representative) of streamlines in the 2, z and y, z planes as follows: 
(a) saddle point, T ,  z plane; ( b )  saddle point, y, z plane; (c) nodal point, c < co, 2, z plane; 
(d )  nodal point, c < co, y, z plane; ( e )  nodal point, c > co, 2, z plane; (f) nodal point, 
c > co, y, z plane. 

imply the existence of a critical value of c, say co, in (0, i ) ,  where the character of 
the inviscid flow changes. If c < c0, there would be reverse flow in one component 
only, and if c > co, there would be reverse flow in both components. The numerical 
evidence (which will be described later) strongly supports this view. Physically, 
it appears that, if c is small and positive, the curvature in the y direction is not 
very large and the x component of the flow is able to bleed off enough fluid to 
prevent flow reversal in the y component occurring at  all. The precise values of co 
will be discussed later. For the present we assume its existence on numerical 
evidence. The supposed flow configuration then implies that the stagnation point 
of attachment close to the wall is of saddle-point type for c < co and nodal-point 
type for c > co. Now let us examine these two cases in greater detail. 
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Case c < co 

The inviscid similarity solution is here very similar to the saddle-point case, 
that is 

for some constant d. Near the wall we have, for the inner viscous region, 

f = 5- ( 2 / d )  (1 -e-a), g = 5 (3.1) 

F w - 7 ,  G - 7 ,  
and if we write 

F = - f (  0 71, G = go(7), c* = - c ,  

then we again obtain (2.6), except that this time c* < 0, and so we have a Davey 
type of saddle point of attachment at the wall. Note that we can again verify that 
(3.1) is the correct asymptotic representation of the outer flow, by doing a full 
numerical integration and plotting log (1 -f’) against 5. This has been done for 
the case c = 0.1. The expected straight line again materializes, and the value of 
the constant d is 3.57 for this case. The x and y components of the skin friction also 
clearly tend to the values expected for a saddle point of attachment near the wall, 
thus offering further confirmatory evidence. Hence for c < co (whatever c,, may 
be; certainly it is greater than O a l ! )  the first-order nodal-point problem may be 
considered solved. 

Case c > co 

This case is more difficult, since both velocity components exhibit reverse flow, 
and our similarity equations are given by ( I  .9) without any simplifying features. 
The author has not been able to find an analytical solution to this pair of coupled 
nonlinear ordinary differential equations, except for the case c = I ,  f = g. 
However, there is little doubt that they do correctly describe the first approxi- 
mation to the outer flow, for reasons which will be given later. Note that the 
system (1.9) and the associated boundary conditions are invariant under the 

(3.2) 
transformation 

Thus we have a choice of a positive constant a at our disposal when comparing 
the similarity solution with any numerical integration of the full problem. This 
constant plays precisely the same role as the constant c in the original Proudman & 
Johnson paper, reflecting an uncertainty in the asymptotic similarity solution 
as to the precise location of the time origin. In this context it may be helpful to 
think of a as a scale stretching constant at our disposal to make the similarity 
solution fit the numerical solution as well as possible. Since (1.9) cannot be solved 
analytically, two choices are open to us. Either solve it numerically for a parti- 
cular value of c, and compare such results with the full numerical integration, or 
else attempt to find perturbation solutions about c = 1. Both of these courses have 
been followed. Figure 2 shows the numerical similarity solution for c = 0.75, 
except for the region close to the wall, where it is not relevant. The numerical 
solution of the full initial-value problem cannot be drawn separately from this on 
a graph, and so, for the values of fT chosen, may be regarded as the same curve. 
Clearly the agreement is excellent. Furthermore the skin-friction components do 

f + a f ,  g - t a g ,  5 + 4  
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1 .o 

0.5 

0 

FIGURE 2. Similarity solutions for c = 0.75 and approximate similarity solutions for 
c = 0.9, both coincident with numerical solutions for values plotted. 

indeed approach those predicted by assuming a nodal point of attachment in the 
viscous inner layer near the wall. 

Near c = 1, an approximate solution of the similarity equations can be 
obtained by writing (1.9) in the form 

I f "/(.P - 1 ) = I / [ f  + cg - ( 1 + c) 51, 
9"/(9'2- 1) = c / [ f + c g - ( l + c ) ~ ]  

(3.3) 

and iterating, using the axisymmetric solution as a starting point. This gives 

for some constants y and 6, where f o  is the axisymmetric solution. The role of the 
constants y and 8 is not clear, though presumably these too must be chosen to  
give the best fit between the numerical and the similarity solutions. Also it is a 
little strange that there are two such constants, in view of (3.2). However, in 
principle they are related by (1 .1  I ) ,  and any choice of these must be consistent 
with the value of K obtained for any particular c .  The comparison has been made 
for the case c = 0-9, and the results are displayed in figure 2. Again the agreement 
is excellent, the numerical and similarity curves being indistinguishable on a 
graph, for the values o f f  plotted (i.e. excepting points very close to the wall). 
It was found that y = 1-6 and S = 0.67 for this value of c. For c = I the values 



296 J. A .  Howa,rth 
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FIGURE 3. Curves of x and y components of skin friction BS. time. 
The straight lines are the expected asymptotic limits. 

would of course be y = 6 = 1, and at  first sight this is a large variation; however 
the behaviour of the solutions as a function of c was generally found to be very 
nonlinear. An alternative method of approximation is to  develop a series in 
powers of 1 - c about the c = I solution. This has been done, but the approxima- 
tions obtained are not quite as good as those obtained from the above results, and 
so are not presented. 

4. Higher-order approximations for the saddle-point case 
It is possible to make some progress towards higher-order approximations for 

the saddle-point case, in fact as far as the second outer and second inner problem, 
following the methods used by Robins & Howarth. The details are not presented 
here, but the interested reader is referred to Howarth (1972) for further details 
of this, and other aspects of the work described herein. 
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5. Numerical solutions 
The precise method of obtaining numerical solutions to the full viscous initial- 

value problem is the same in principle as that used by Robins & Howarth, and so 
a description will not be given here. Results have been obtained for the cases 
c = - 0.5, - 0.05, 0, 0.25, 0.3, 0.4294, 0.5, 0.75, 0.9 and 1. Sample graphs of the 
x and y components of the skin friction us. time are presented in figure 3, for 
c = - 0.5, 0.1 and 0.9. The numerical results indicate that the similarity solution 
is definitely the correct asymptotic solution to the problem. The only outstanding 
question is that of the precise value of co, where the character of the flow changes 
for c positive. The numerical results indicate that, for c = 0-1 and 0.3, the skin- 
friction curves definitely tend towards the values expected for a saddle point of 
attachment near the wall. For c = 0.9, 0.75 and 0.5, a nodal point of attachment 
is just as clearly indicated. Near c = 0-4 the skin-friction curves seem to change 
only slowly with time (at least, after the initial stages of setting up reverse flow 
are beginning to settle down), and since for technical reasons the numerical 
integration had to terminate a t  t = 5.5 for these values of c, it is tc little difficult to 
see precisely what is going on. Now co definitely lies between 0-3 and 0.5, and is 
probably near 0-4. It seems very possible that the critical value found by Davey 
(0.4294, allowing for a sign change) is again a critical value for these separating 
flows; and just as Davey expected that the outer flow (and therefore the inner 
flow) would change drastically from c < co to c > co, so the same happens here. 

The author is deeply indebted to Dr W.H.H.Banks, of the University of 
Bristol, for much help and encouragement. Thanks are also due to the Science 
Research Council for financial support. 
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